- Title
- Exact matrix computation by multiple P-adic arithmetic
-
-
- Identifier
- DF2015Li
-
-
- Format
- ["pdf"]
-
- Language
- ["English"]
-
- Collection Name
- ["Towson University Graduate Theses and Dissertations"]
-
Exact matrix computation by multiple P-adic arithmetic
Hits:
(0)
























TOWSON UNIVERSITY
OFFICE OF GRADUATE STUDIES
EXACT MATRIX COMPUTATION BY MULTIPLE P-ADIC
ARITHMETIC
Xin Kai Li
A Dissertation
Presented to the Faculty of the Graduate School
of Towson University
in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF SCIENCE
Department of Computer and Information Sciences
TOWSON UNIVERSITY
Towson, Maryland, 21252
December 2015
DF2015Li_Redacted-001
DF2015Li_Redacted-002
DF2015Li_Redacted-003
DF2015Li_Redacted-004
DF2015Li_Redacted-005
DF2015Li_Redacted-006
DF2015Li_Redacted-007
DF2015Li_Redacted-008
DF2015Li_Redacted-009
DF2015Li_Redacted-010
DF2015Li_Redacted-011
DF2015Li_Redacted-012
DF2015Li_Redacted-013
DF2015Li_Redacted-014
DF2015Li_Redacted-015
DF2015Li_Redacted-016
DF2015Li_Redacted-017
DF2015Li_Redacted-018
DF2015Li_Redacted-019
DF2015Li_Redacted-020
DF2015Li_Redacted-021
DF2015Li_Redacted-022
DF2015Li_Redacted-023
DF2015Li_Redacted-024
DF2015Li_Redacted-025
DF2015Li_Redacted-026
DF2015Li_Redacted-027
DF2015Li_Redacted-028
DF2015Li_Redacted-029
DF2015Li_Redacted-030
DF2015Li_Redacted-031
DF2015Li_Redacted-032
DF2015Li_Redacted-033
DF2015Li_Redacted-034
DF2015Li_Redacted-035
DF2015Li_Redacted-036
DF2015Li_Redacted-037
DF2015Li_Redacted-038
DF2015Li_Redacted-039
DF2015Li_Redacted-040
DF2015Li_Redacted-041
DF2015Li_Redacted-042
DF2015Li_Redacted-043
DF2015Li_Redacted-044
DF2015Li_Redacted-045
DF2015Li_Redacted-046
DF2015Li_Redacted-047
DF2015Li_Redacted-048
DF2015Li_Redacted-049
DF2015Li_Redacted-050
DF2015Li_Redacted-051
DF2015Li_Redacted-052
DF2015Li_Redacted-053
DF2015Li_Redacted-054
DF2015Li_Redacted-055
DF2015Li_Redacted-056
DF2015Li_Redacted-057
DF2015Li_Redacted-058
DF2015Li_Redacted-059
DF2015Li_Redacted-060
DF2015Li_Redacted-061
DF2015Li_Redacted-062
DF2015Li_Redacted-063
DF2015Li_Redacted-064
DF2015Li_Redacted-065
DF2015Li_Redacted-066
DF2015Li_Redacted-067
DF2015Li_Redacted-068
DF2015Li_Redacted-069
DF2015Li_Redacted-070
DF2015Li_Redacted-071
DF2015Li_Redacted-072
DF2015Li_Redacted-073
DF2015Li_Redacted-074
DF2015Li_Redacted-075
DF2015Li_Redacted-076
DF2015Li_Redacted-077
DF2015Li_Redacted-078
DF2015Li_Redacted-079
DF2015Li_Redacted-080
DF2015Li_Redacted-081
DF2015Li_Redacted-082
DF2015Li_Redacted-083
DF2015Li_Redacted-084
DF2015Li_Redacted-085
DF2015Li_Redacted-086
DF2015Li_Redacted-087
DF2015Li_Redacted-088
DF2015Li_Redacted-089
DF2015Li_Redacted-090
DF2015Li_Redacted-091
DF2015Li_Redacted-092
DF2015Li_Redacted-093
DF2015Li_Redacted-094
DF2015Li_Redacted-095
DF2015Li_Redacted-096
DF2015Li_Redacted-097
DF2015Li_Redacted-098
DF2015Li_Redacted-099
DF2015Li_Redacted-100
DF2015Li_Redacted-101
DF2015Li_Redacted-102
DF2015Li_Redacted-103
DF2015Li_Redacted-104
DF2015Li_Redacted-105
DF2015Li_Redacted-106
DF2015Li_Redacted-107
DF2015Li_Redacted-108
DF2015Li_Redacted-109
DF2015Li_Redacted-110
DF2015Li_Redacted-111
DF2015Li_Redacted-112
DF2015Li_Redacted-113
DF2015Li_Redacted-114
DF2015Li_Redacted-115
DF2015Li_Redacted-116
DF2015Li_Redacted-117
DF2015Li_Redacted-118
DF2015Li_Redacted-119
DF2015Li_Redacted-120
DF2015Li_Redacted-121
DF2015Li_Redacted-122
DF2015Li_Redacted-123
DF2015Li_Redacted-124
DF2015Li_Redacted-125
DF2015Li_Redacted-126
DF2015Li_Redacted-127
DF2015Li_Redacted-128
DF2015Li_Redacted-129
DF2015Li_Redacted-130
DF2015Li_Redacted-131
DF2015Li_Redacted-132
DF2015Li_Redacted-133
DF2015Li_Redacted-134
DF2015Li_Redacted-135
DF2015Li_Redacted-136
DF2015Li_Redacted-137
Select what you would like to download. If choosing to download an image, please select the file format you wish to download.
The Original File option allows download of the source file (including any features or enhancements included in the original file) and may take several minutes.
Certain download types may have been restricted by the site administrator.